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Introduction 

Fluid Properties 

   The study of the behavior of vapor and liquid in 

petroleum reservoirs as a function of pressure, 

volume, temperature, and composition 

 

Importance of PVT Properties 

  Determination of hydrocarbon reserves 

  Reservoir and simulation studies 

  Design of production facilities 



State of the Art  

 Graphical correlations are reduced to equations 

 Correlations have been improved 

 Fluid classification in reservoirs is defined  

 Laboratory analyses have been standardized  

 Chemical analyses of petroleum are made 

available  

 EOS is utilized to calculate gas-liquid equilibria 



 Determination of PVT properties 

 

 Laboratory measurements using: 

  Bottom hole sample 

  Recombined surface sample 

 Equation of state with appropriate calibrations 

 Empirical correlations with appropriate range 

of application   

 Artificial neural networks models 



Problems related to 

experimentation 

Reservoir process presentation 

Physical trends of lab data 



Reservoir process presentation  
 Lab tests do not duplicate reservoir process 

 

Petroleum engineers consider liberation process in 
reservoir approaches differential 

 

 Liberation process around well is considered flash 

 

Actual process is neither flash nor differential 

 

A combination test may be closest to the reservoir 
process 



Phase transition in oil reservoir   

    Zone A: above pb   

    Zone B: below pb, flash 

    Zone C: differential 
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Typical trends of good lab data 

1.29

1.30

1.30

1.30

1.31

1.31

1500 2000 2500 3000 3500

Pressure

V
o

0.00

0.00

0.00

0.00

0.00

0.00

1500 2000 2500 3000 3500

Pressure

C
o

-1.54E-09

-1.53E-09

-1.53E-09

-1.52E-09

-1.52E-09

1500 2000 2500 3000 3500

Pressure

S
lo

p
e 

o
f 

C
o

Good experimental P-V data 

should follow physical trend.  
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Abnormal Co trend 
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Abnormal Co derivative trend 
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Problems related to calculations 
 

Adjustment of differential data   

as an example 



Adjustment of differential data  

to separator conditions -Why?  

Rs  and Bo  obtained by differential liberation   
are not the same as                                            
Rs  and Bo obtained by flash liberation 

 

Oil leaving reservoir is flashed to separator, 
therefore Rs  and Bo should be determined by a 
flash process 

 

Flash liberation does not cover whole range of 
interest, therefore differential data are corrected   

 



  

 Current adjustment method-Properties  

 At lower pressure formation volume factor, Bo 

might read a value less than 1 
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Current adjustment method-Properties  

 At lower pressure, the solution gas-oil ratio, Rs 
extrapolates to negative values. 
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 Current adjustment method-Properties  

 

 Current adjustment 

method does not 

honor density at 

bubble point  under 

reservoir conditions 

ob

gso

ob
B

Rx 

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Property Adjusted 

Differential 

Flash 

Liberation 

 Bob 
1.289 1.289 

 Rs 
526 526 

 g 
0.9336 0.8024 

 o 
0.8448 0.8343 

 ob 
0.738444 0.7186265 

 The same crude 

under the same 

reservoir conditions, 

but different 

densities  



Adjustment methods of oil FVF 

  Current Adjustment of Bo  
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Oil FVF 
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Adjustment methods of solution GOR 

  Current Adjustment of Rs 

  Suggested Adjustment 
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Solution GOR 
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Adjustment methods of gas relative density 

  Current Adjustment of g 

  Suggested Adjustment 
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Gas relative density 
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Adjustment methods of oil relative density 

  Current Adjustment of o 

  Suggested Adjustment 
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Oil relative density 
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Live oil relative density 
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Problems related to  

Smoothing experimental data  

Smoothing relative total volume data 

as an example 



Smoothing relative total volume data 

 To obtain P-V data, conduct a flash 

liberation experiment on a gas-oil mixture 

at a constant temperature 

 Data analysis defines 

 volume & pressure at bubble point  

 FVF above pb & total FVF below pb 

 The experimental data as reported are 

accompanied by measurement errors. 

Therefore, the data are usually smoothed 



Y-function properties  

 

Only the experimental data at 

pressures below  pb are utilized 

to obtain pb 
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Bubble point volume is not 

corrected 

 

Y-Correlation with an error in the 

bubble point volume may yield a 

straight line but with the wrong 

pb 



Y–Function plot 
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Smoothing relative total volume data 
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X-Y Function plot 
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Problems related to 

correlations 

Correlation application 

Properties of correlations 

Physical trends of correlations 

Pitfalls of least square method  



Correlation application 

Correlations normally used to determine: 

 Bubble-point pressure, Pb 

 Solution gas-oil ratios, Rs 

 Density of liquids 

 Oil FVF, Bob & total FVF, Bt 

 Adjustment of Bob and Rs 

 Oil compressibility, Co 

 Oil viscosity, μo , μa , μl 

 Interfacial tension, σ 



Properties of correlations  

 Correlations typically match employed experimental 

data, with  deviations less than a few percent 

 When applied to other fluids, a much higher 

deviations are observed 

 If fluids fall within the range of tested fluids, an 

acceptable accuracy can be expected 

 Fluid composition could not be explained by gross 

properties  

 Errors in some PVT correlations are not acceptable 



Physical trends of correlations 

   Trend tests are to check whether the 

performance of correlation follows 

physical behavior or not: 

 
 Trend tests on predicted values 

 

 Trend tests on errors 



Correlation with two equations 
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Correlation with non-physical constraint 
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Correlation with limited data 
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Trend Tests on Error: Effect of API On Bob 
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Trend Tests on Error: Effect of GRD On Bob 
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Pitfalls of least square method 

 Used to estimate the regression coefficients in model 

)(xfy 

 Basic assumption of LSM is the independent 

variable x is determinate, i.e. it has no error 

 

 But x and y involve measurement errors, therefore 

 

 Do not rely entirely on a method when its basic 

assumption is violated 



Comparison of the “Best fit line” 
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Pitfalls of logarithmic equivalence 

 logarithmic equivalent used to linearize equations 

 Given the problem 

 Use the logarithmic equivalent  

 Apply LSM to minimize error 

 Compare errors δ2 

xnky logloglog 

nkxy 
x y 

1   2.5 

2   8.0 

3 19.0 

4 50.0 



Method k  n 

δ2 

(logarithmic 

equivalent) 

δ2 

(original 

problem) 

LSM 2.224 2.096 0.02098 100.2 

Iterative 0.474  3.36  0.56838 13.9 

Comparative error analysis 
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Error using original values 



Artificial neural networks 

Definition 

Advantages 

Problems & Challenges 



Artificial neural networks 

   A mathematical model that can acquire 

artificial intelligence. It resembles brain in 

two respects by 

 Acquiring knowledge through learning 

process  

 Storing knowledge through assigning 

inter-neuron connection strengths known 

as weights 



Neural network architecture 

INPUT  
HIDDEN 

API 

Rs 

g 

T 

OUTPUT  

Bob 

Pb 



ANN Advantages 
  

 Model function does not have to be known 

 ANN learns behavior by self-tuning its parameters 

 ANN has the ability to discover patterns   

 ANN is fast-responding systems and provides a 

confident prediction 

 ANN can accept more input to improve accuracy; such 

continuous enrichment or “knowledge” leads to more 

accurate predictive model 



ANN Problems & Challenges 

   Design of ANN:    

   Number of hidden layers  

   Number of neurons in each hidden layer  

   Learning constant to control speed of training  



ANN Problems & Challenges 

    Generalization Vs. Over Fitting 

   New training algorithms (cross validation) 

   Hybrid systems (expert systems) 

   Number of adjustable weights is large which   

is not justified unless the PVT data is huge 

 Is the neural network the ultimate solution? 



PVT Reporting  

Typical PVT report  

PVT report shortcoming 

Suggested improvement 



  Sampling information 

  Hydrocarbon analysis of reservoir fluid 

  Oil compressibility 

  Pressure volume relationship (smoothed data) 

  Differential liberation   

  Separator tests  

  Hydrocarbon analysis of lab flashed gases 

  Liquid and gas viscosity data   

  Mixture density    

Typical PVT Report 



PVT Report- Shortcoming 

 Reports smoothed results only 

 

 Does not include raw data 

 

 Does not verify data consistency  



Raw data reporting 

Pressure volume (experimental data)  

Differential liberation (experimental data) 

Viscosity (experimental data) 

 

Data consistency 

Mixture density calculation & verification 

Co calculation & verification 

 

PVT Report -Suggested improvement 



 
Conclusions 

 More improvement in the following areas: 
 

  Problems related to experimentation  

Reservoir process presentation 

Physical trends of lab data 

  Problems related to calculations  

Adjustment of differential data 

  Problems related to data smoothing    

Y-function 

XY-function 



 
Conclusions 

  Problems related to correlations   

Physical trends of correlations 

Pitfalls of least square method 

 Artificial neural networks  

Design of ANN 

Over Fitting 

 PVT Reporting  

Raw data reporting 

Data consistency 



Final Comment 

There are challenges in addressing these 

problems, but there are untapped scientific 

tools as well.  

We explored these challenges and 

examined possible solutions.  



 

   
Thank You 

 

             


